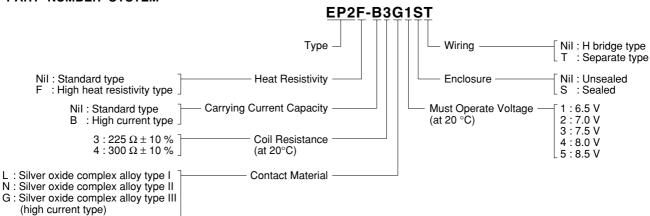
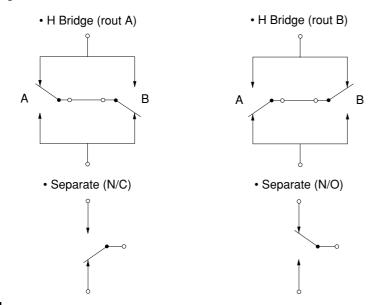
EP2 SERIES

FEATURES

- · Twin relay for motor and solenoid reversible control
- 50% less relay space than conventional two relays
- · Contact switching current of 30 A max.
- High performance and productivity by unique symmetrical structure
- · Flux tight housing
- · Delivered in stick-tube for automatic insertion machine
- · Washable type available

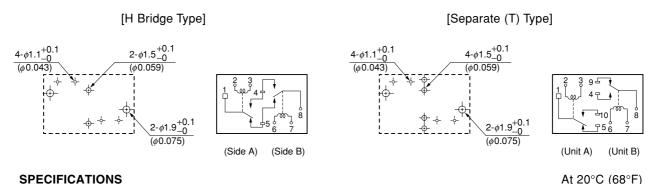


PART NUMBERS AND COIL RATINGS


At 20°C (68°F)

Part N	umber	Nominal	Coil	Nominal	Must Operate	Must Release	Nominal
H bridge	Separate	Voltage	Resistance	Current	Voltage	Voltage	Operate Power
Туре	Type	(Vdc)	(Ω±10%)	(mA)	(Vdc)	(Vdc)	(W)
EP2-3N1S	EP2-3N1ST	12	225	53.3	6.5	0.9	0.64
EP2-3N2S	EP2-3N2ST	12	225	53.3	7.0	0.9	0.64
EP2-3N3S	EP2-3N3ST	12	225	53.3	7.5	0.9	0.64
EP2-4N3S	EP2-4N3ST	12	300	40.0	7.5	0.9	0.48
EP2-4N4S	EP2-4N4ST	12	300	40.0	8.0	0.9	0.48
EP2-4N5S	EP2-4N5ST	12	300	40.0	8.5	0.9	0.48

PART NUMBER SYSTEM


Figure 1 Contact Resistance*

DIMENSIONS mm (inch)

[H Bridge Type] [Separate (T) Type] 23.8 ± 0.5 16.2 ± 0.5 23.8 ± 0.5 $16.2\pm0.5\,$ (0.94)(0.64) (0.94)(0.64)16.0 ± 0.5 (0.63) 16.0 ± 0.5 (0.63) -0.5(0.02)**←**0.5(0.02) *2-0.5 × 1.1(0.02 × 0.04) *4-0.5 × 1.1(0.02 × 0.04) 10.1 (0.4) 8.0 (0.31) 10.1 (0.4) 8.0 (0.31) 5.45 (0.21) 6.4 (0.25) 3.1(0.12) -2.2(0.09)**←**2.2(0.04) -3.5 (0.14) 3.5 5.45 (0.21) 6.4 (0.25) 6.4 (0.25) 5.45 (0.21) 5.45 3.1 (0.12) 2.2 (0.09) (0.09) (0.14)3.5 (0.14)3.5 *2-1.3 × 1.3 (0.05 × 0.05) *2-1.3 × 1.3 (0.05 × 0.05) (0.4) 10.1 (0.4) 10.1 *4-ø0.6 *4-*\phi*0.6 (φ0.02) (φ 0.02) * After soldering

PCB PAD LAYOUT and SCHEMATICS (bottom view) mm (inch)

Items		Specification			
		EP2- (Standard)	EP2-B (High Current)		
Contact Form		1 Form c × 2 (H Bridge Type or Separate Type)			
Contact Material		Silver oxide complex alloy (Special types available)			
Contact Resistance		H Bridge (rout A): 10.7 mΩ typ.	H Bridge (rout A): 6.7 mΩ typ.		
(* figure 1)		H Bridge (rout B): 10.4 mΩ typ.	H Bridge (rout B): 6.4 mΩ typ.		
		Separate (N/C): 5.2 mΩ typ.	Separate (N/C): 3.2 m Ω typ.		
(measured by voltage drop	at 6Vdc, 7A)	Separate (N/O): 5.2 mΩ typ.	Separate (N/O): 3.2 mΩ typ.		
Contact Switching Voltage		16 Vdc max. 5 Vdc min.			
Contact Switching Current	t	30A max. (at 16 Vdc) 1A min.			
Contact Carrying Current		25A (12 Vdc, 20°C)	30A (12Vdc, 20°C)		
(2 minutes max.)		20A (12 Vdc, 85°C)	25A (12Vdc, 85°C)		
Operate Time		Approx. 5 ms (at 12 Vdc)			
Release Time		Approx. 7 ms (at 12 Vdc), with diode			
Nominal Operate Power		0.48 W/0.64 W (at 12 Vdc)			
Insulation Resistance		100 MΩ min. at 500 Vdc, Initial			
Breakdown Voltage		500 Vac min. for 1 minute, Initial			
Shock Resistance		98 m/s ² min. (misoperating)			
Vibration Resistance		10 to 300 Hz, 43 m/s ² min. (misoperating)			
Ambient Temperature		-40°C to +85°C (-40°F to +185°F)			
Coil Temperature Rise		50°C/W (Contact Carrying Current 0 A)			
Life Expectancy Mechanical		1×10^6 operations			
	Electrical	1×10^5 operations (at 14 Vdc, Motor Load 25 A/5 A)			
Weight		Approx. 15 g			

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC/TOKIN Corporation. NEC/TOKIN Corporation assumes no resposibility for any errors which may appear in this document.

NEC/TOKIN Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC /TOKIN Corporation or others.

While NEC/TOKIN Corporation has been making continuous effort to enhance the reliability of its electronic components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC/TOKIN electronic component, customers must incorporate sufficient safety measures in its design, such as redundancy, firecontainment, and anti-failure features. NEC/TOKIN devices are classified into the following three quality grades:

"Standard," "Special," and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools,

personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,

anti-disaster systems, anti-crime systems, safety equipment and medical

equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control

systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC/TOKIN devices is "Standard" unless otherwise specified in NEC/TOKIN's Data Sheets or Data Books. If customers intend to use NEC/TOKIN devices for applications other than those specified for Standard quality grade, they should contact an NEC/TOKIN sales representative in advance.

(Note)

- (1) "NEC/TOKIN" as used in this statement means NEC/TOKIN Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC/TOKIN electronic component products" means any electronic component product developed or manufactured by or for NEC/TOKIN (as defined above).

DE0202